metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C20⋊C8⋊12C2, C22⋊C4.6F5, C23.9(C2×F5), C10.7(C8○D4), C23.D5.4C4, Dic5⋊C8⋊9C2, C10.D4.8C4, C2.10(D4.F5), C10.C42⋊12C2, C10.9(C42⋊C2), C23.2F5.3C2, Dic5.27(C4○D4), C22.73(C22×F5), C5⋊1(C42.7C22), (C2×Dic5).327C23, (C4×Dic5).243C22, C23.11D10.7C2, (C22×Dic5).182C22, C2.12(D10.C23), (C4×C5⋊C8)⋊13C2, (C2×C4).58(C2×F5), (C2×C20).82(C2×C4), (C5×C22⋊C4).6C4, (C2×C5⋊C8).24C22, (C22×C10).18(C2×C4), (C2×C10).35(C22×C4), (C2×Dic5).52(C2×C4), SmallGroup(320,1035)
Series: Derived ►Chief ►Lower central ►Upper central
| C1 — C5 — C10 — Dic5 — C2×Dic5 — C2×C5⋊C8 — C4×C5⋊C8 — C23.(C2×F5) |
Generators and relations for C23.(C2×F5)
G = < a,b,c,d,e | a2=b2=c4=d5=1, e4=b, cac-1=ab=ba, ad=da, eae-1=ac2, bc=cb, bd=db, be=eb, cd=dc, ce=ec, ede-1=d3 >
Subgroups: 298 in 96 conjugacy classes, 42 normal (all characteristic)
C1, C2, C2, C4, C22, C22, C5, C8, C2×C4, C2×C4, C23, C10, C10, C42, C22⋊C4, C22⋊C4, C4⋊C4, C2×C8, C22×C4, Dic5, Dic5, C20, C2×C10, C2×C10, C4×C8, C8⋊C4, C22⋊C8, C4⋊C8, C42⋊C2, C5⋊C8, C2×Dic5, C2×Dic5, C2×C20, C22×C10, C42.7C22, C4×Dic5, C10.D4, C23.D5, C5×C22⋊C4, C2×C5⋊C8, C22×Dic5, C4×C5⋊C8, C20⋊C8, C10.C42, Dic5⋊C8, C23.2F5, C23.11D10, C23.(C2×F5)
Quotients: C1, C2, C4, C22, C2×C4, C23, C22×C4, C4○D4, F5, C42⋊C2, C8○D4, C2×F5, C42.7C22, C22×F5, D10.C23, D4.F5, C23.(C2×F5)
(1 132)(3 134)(5 136)(7 130)(10 73)(12 75)(14 77)(16 79)(17 21)(18 91)(19 23)(20 93)(22 95)(24 89)(25 37)(26 30)(27 39)(28 32)(29 33)(31 35)(34 38)(36 40)(41 141)(43 143)(45 137)(47 139)(49 53)(50 111)(51 55)(52 105)(54 107)(56 109)(57 65)(59 67)(61 69)(63 71)(81 145)(82 86)(83 147)(84 88)(85 149)(87 151)(90 94)(92 96)(97 101)(98 127)(99 103)(100 121)(102 123)(104 125)(106 110)(108 112)(113 159)(115 153)(117 155)(119 157)(122 126)(124 128)(146 150)(148 152)
(1 5)(2 6)(3 7)(4 8)(9 13)(10 14)(11 15)(12 16)(17 21)(18 22)(19 23)(20 24)(25 29)(26 30)(27 31)(28 32)(33 37)(34 38)(35 39)(36 40)(41 45)(42 46)(43 47)(44 48)(49 53)(50 54)(51 55)(52 56)(57 61)(58 62)(59 63)(60 64)(65 69)(66 70)(67 71)(68 72)(73 77)(74 78)(75 79)(76 80)(81 85)(82 86)(83 87)(84 88)(89 93)(90 94)(91 95)(92 96)(97 101)(98 102)(99 103)(100 104)(105 109)(106 110)(107 111)(108 112)(113 117)(114 118)(115 119)(116 120)(121 125)(122 126)(123 127)(124 128)(129 133)(130 134)(131 135)(132 136)(137 141)(138 142)(139 143)(140 144)(145 149)(146 150)(147 151)(148 152)(153 157)(154 158)(155 159)(156 160)
(1 18 132 95)(2 19 133 96)(3 20 134 89)(4 21 135 90)(5 22 136 91)(6 23 129 92)(7 24 130 93)(8 17 131 94)(9 101 80 126)(10 102 73 127)(11 103 74 128)(12 104 75 121)(13 97 76 122)(14 98 77 123)(15 99 78 124)(16 100 79 125)(25 139 33 47)(26 140 34 48)(27 141 35 41)(28 142 36 42)(29 143 37 43)(30 144 38 44)(31 137 39 45)(32 138 40 46)(49 114 106 160)(50 115 107 153)(51 116 108 154)(52 117 109 155)(53 118 110 156)(54 119 111 157)(55 120 112 158)(56 113 105 159)(57 151 65 83)(58 152 66 84)(59 145 67 85)(60 146 68 86)(61 147 69 87)(62 148 70 88)(63 149 71 81)(64 150 72 82)
(1 12 57 143 113)(2 144 13 114 58)(3 115 137 59 14)(4 60 116 15 138)(5 16 61 139 117)(6 140 9 118 62)(7 119 141 63 10)(8 64 120 11 142)(17 150 112 103 36)(18 104 151 37 105)(19 38 97 106 152)(20 107 39 145 98)(21 146 108 99 40)(22 100 147 33 109)(23 34 101 110 148)(24 111 35 149 102)(25 52 91 125 87)(26 126 53 88 92)(27 81 127 93 54)(28 94 82 55 128)(29 56 95 121 83)(30 122 49 84 96)(31 85 123 89 50)(32 90 86 51 124)(41 71 73 130 157)(42 131 72 158 74)(43 159 132 75 65)(44 76 160 66 133)(45 67 77 134 153)(46 135 68 154 78)(47 155 136 79 69)(48 80 156 70 129)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136)(137 138 139 140 141 142 143 144)(145 146 147 148 149 150 151 152)(153 154 155 156 157 158 159 160)
G:=sub<Sym(160)| (1,132)(3,134)(5,136)(7,130)(10,73)(12,75)(14,77)(16,79)(17,21)(18,91)(19,23)(20,93)(22,95)(24,89)(25,37)(26,30)(27,39)(28,32)(29,33)(31,35)(34,38)(36,40)(41,141)(43,143)(45,137)(47,139)(49,53)(50,111)(51,55)(52,105)(54,107)(56,109)(57,65)(59,67)(61,69)(63,71)(81,145)(82,86)(83,147)(84,88)(85,149)(87,151)(90,94)(92,96)(97,101)(98,127)(99,103)(100,121)(102,123)(104,125)(106,110)(108,112)(113,159)(115,153)(117,155)(119,157)(122,126)(124,128)(146,150)(148,152), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32)(33,37)(34,38)(35,39)(36,40)(41,45)(42,46)(43,47)(44,48)(49,53)(50,54)(51,55)(52,56)(57,61)(58,62)(59,63)(60,64)(65,69)(66,70)(67,71)(68,72)(73,77)(74,78)(75,79)(76,80)(81,85)(82,86)(83,87)(84,88)(89,93)(90,94)(91,95)(92,96)(97,101)(98,102)(99,103)(100,104)(105,109)(106,110)(107,111)(108,112)(113,117)(114,118)(115,119)(116,120)(121,125)(122,126)(123,127)(124,128)(129,133)(130,134)(131,135)(132,136)(137,141)(138,142)(139,143)(140,144)(145,149)(146,150)(147,151)(148,152)(153,157)(154,158)(155,159)(156,160), (1,18,132,95)(2,19,133,96)(3,20,134,89)(4,21,135,90)(5,22,136,91)(6,23,129,92)(7,24,130,93)(8,17,131,94)(9,101,80,126)(10,102,73,127)(11,103,74,128)(12,104,75,121)(13,97,76,122)(14,98,77,123)(15,99,78,124)(16,100,79,125)(25,139,33,47)(26,140,34,48)(27,141,35,41)(28,142,36,42)(29,143,37,43)(30,144,38,44)(31,137,39,45)(32,138,40,46)(49,114,106,160)(50,115,107,153)(51,116,108,154)(52,117,109,155)(53,118,110,156)(54,119,111,157)(55,120,112,158)(56,113,105,159)(57,151,65,83)(58,152,66,84)(59,145,67,85)(60,146,68,86)(61,147,69,87)(62,148,70,88)(63,149,71,81)(64,150,72,82), (1,12,57,143,113)(2,144,13,114,58)(3,115,137,59,14)(4,60,116,15,138)(5,16,61,139,117)(6,140,9,118,62)(7,119,141,63,10)(8,64,120,11,142)(17,150,112,103,36)(18,104,151,37,105)(19,38,97,106,152)(20,107,39,145,98)(21,146,108,99,40)(22,100,147,33,109)(23,34,101,110,148)(24,111,35,149,102)(25,52,91,125,87)(26,126,53,88,92)(27,81,127,93,54)(28,94,82,55,128)(29,56,95,121,83)(30,122,49,84,96)(31,85,123,89,50)(32,90,86,51,124)(41,71,73,130,157)(42,131,72,158,74)(43,159,132,75,65)(44,76,160,66,133)(45,67,77,134,153)(46,135,68,154,78)(47,155,136,79,69)(48,80,156,70,129), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160)>;
G:=Group( (1,132)(3,134)(5,136)(7,130)(10,73)(12,75)(14,77)(16,79)(17,21)(18,91)(19,23)(20,93)(22,95)(24,89)(25,37)(26,30)(27,39)(28,32)(29,33)(31,35)(34,38)(36,40)(41,141)(43,143)(45,137)(47,139)(49,53)(50,111)(51,55)(52,105)(54,107)(56,109)(57,65)(59,67)(61,69)(63,71)(81,145)(82,86)(83,147)(84,88)(85,149)(87,151)(90,94)(92,96)(97,101)(98,127)(99,103)(100,121)(102,123)(104,125)(106,110)(108,112)(113,159)(115,153)(117,155)(119,157)(122,126)(124,128)(146,150)(148,152), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32)(33,37)(34,38)(35,39)(36,40)(41,45)(42,46)(43,47)(44,48)(49,53)(50,54)(51,55)(52,56)(57,61)(58,62)(59,63)(60,64)(65,69)(66,70)(67,71)(68,72)(73,77)(74,78)(75,79)(76,80)(81,85)(82,86)(83,87)(84,88)(89,93)(90,94)(91,95)(92,96)(97,101)(98,102)(99,103)(100,104)(105,109)(106,110)(107,111)(108,112)(113,117)(114,118)(115,119)(116,120)(121,125)(122,126)(123,127)(124,128)(129,133)(130,134)(131,135)(132,136)(137,141)(138,142)(139,143)(140,144)(145,149)(146,150)(147,151)(148,152)(153,157)(154,158)(155,159)(156,160), (1,18,132,95)(2,19,133,96)(3,20,134,89)(4,21,135,90)(5,22,136,91)(6,23,129,92)(7,24,130,93)(8,17,131,94)(9,101,80,126)(10,102,73,127)(11,103,74,128)(12,104,75,121)(13,97,76,122)(14,98,77,123)(15,99,78,124)(16,100,79,125)(25,139,33,47)(26,140,34,48)(27,141,35,41)(28,142,36,42)(29,143,37,43)(30,144,38,44)(31,137,39,45)(32,138,40,46)(49,114,106,160)(50,115,107,153)(51,116,108,154)(52,117,109,155)(53,118,110,156)(54,119,111,157)(55,120,112,158)(56,113,105,159)(57,151,65,83)(58,152,66,84)(59,145,67,85)(60,146,68,86)(61,147,69,87)(62,148,70,88)(63,149,71,81)(64,150,72,82), (1,12,57,143,113)(2,144,13,114,58)(3,115,137,59,14)(4,60,116,15,138)(5,16,61,139,117)(6,140,9,118,62)(7,119,141,63,10)(8,64,120,11,142)(17,150,112,103,36)(18,104,151,37,105)(19,38,97,106,152)(20,107,39,145,98)(21,146,108,99,40)(22,100,147,33,109)(23,34,101,110,148)(24,111,35,149,102)(25,52,91,125,87)(26,126,53,88,92)(27,81,127,93,54)(28,94,82,55,128)(29,56,95,121,83)(30,122,49,84,96)(31,85,123,89,50)(32,90,86,51,124)(41,71,73,130,157)(42,131,72,158,74)(43,159,132,75,65)(44,76,160,66,133)(45,67,77,134,153)(46,135,68,154,78)(47,155,136,79,69)(48,80,156,70,129), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160) );
G=PermutationGroup([[(1,132),(3,134),(5,136),(7,130),(10,73),(12,75),(14,77),(16,79),(17,21),(18,91),(19,23),(20,93),(22,95),(24,89),(25,37),(26,30),(27,39),(28,32),(29,33),(31,35),(34,38),(36,40),(41,141),(43,143),(45,137),(47,139),(49,53),(50,111),(51,55),(52,105),(54,107),(56,109),(57,65),(59,67),(61,69),(63,71),(81,145),(82,86),(83,147),(84,88),(85,149),(87,151),(90,94),(92,96),(97,101),(98,127),(99,103),(100,121),(102,123),(104,125),(106,110),(108,112),(113,159),(115,153),(117,155),(119,157),(122,126),(124,128),(146,150),(148,152)], [(1,5),(2,6),(3,7),(4,8),(9,13),(10,14),(11,15),(12,16),(17,21),(18,22),(19,23),(20,24),(25,29),(26,30),(27,31),(28,32),(33,37),(34,38),(35,39),(36,40),(41,45),(42,46),(43,47),(44,48),(49,53),(50,54),(51,55),(52,56),(57,61),(58,62),(59,63),(60,64),(65,69),(66,70),(67,71),(68,72),(73,77),(74,78),(75,79),(76,80),(81,85),(82,86),(83,87),(84,88),(89,93),(90,94),(91,95),(92,96),(97,101),(98,102),(99,103),(100,104),(105,109),(106,110),(107,111),(108,112),(113,117),(114,118),(115,119),(116,120),(121,125),(122,126),(123,127),(124,128),(129,133),(130,134),(131,135),(132,136),(137,141),(138,142),(139,143),(140,144),(145,149),(146,150),(147,151),(148,152),(153,157),(154,158),(155,159),(156,160)], [(1,18,132,95),(2,19,133,96),(3,20,134,89),(4,21,135,90),(5,22,136,91),(6,23,129,92),(7,24,130,93),(8,17,131,94),(9,101,80,126),(10,102,73,127),(11,103,74,128),(12,104,75,121),(13,97,76,122),(14,98,77,123),(15,99,78,124),(16,100,79,125),(25,139,33,47),(26,140,34,48),(27,141,35,41),(28,142,36,42),(29,143,37,43),(30,144,38,44),(31,137,39,45),(32,138,40,46),(49,114,106,160),(50,115,107,153),(51,116,108,154),(52,117,109,155),(53,118,110,156),(54,119,111,157),(55,120,112,158),(56,113,105,159),(57,151,65,83),(58,152,66,84),(59,145,67,85),(60,146,68,86),(61,147,69,87),(62,148,70,88),(63,149,71,81),(64,150,72,82)], [(1,12,57,143,113),(2,144,13,114,58),(3,115,137,59,14),(4,60,116,15,138),(5,16,61,139,117),(6,140,9,118,62),(7,119,141,63,10),(8,64,120,11,142),(17,150,112,103,36),(18,104,151,37,105),(19,38,97,106,152),(20,107,39,145,98),(21,146,108,99,40),(22,100,147,33,109),(23,34,101,110,148),(24,111,35,149,102),(25,52,91,125,87),(26,126,53,88,92),(27,81,127,93,54),(28,94,82,55,128),(29,56,95,121,83),(30,122,49,84,96),(31,85,123,89,50),(32,90,86,51,124),(41,71,73,130,157),(42,131,72,158,74),(43,159,132,75,65),(44,76,160,66,133),(45,67,77,134,153),(46,135,68,154,78),(47,155,136,79,69),(48,80,156,70,129)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136),(137,138,139,140,141,142,143,144),(145,146,147,148,149,150,151,152),(153,154,155,156,157,158,159,160)]])
38 conjugacy classes
| class | 1 | 2A | 2B | 2C | 2D | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 5 | 8A | ··· | 8H | 8I | 8J | 8K | 8L | 10A | 10B | 10C | 10D | 10E | 20A | 20B | 20C | 20D |
| order | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 5 | 8 | ··· | 8 | 8 | 8 | 8 | 8 | 10 | 10 | 10 | 10 | 10 | 20 | 20 | 20 | 20 |
| size | 1 | 1 | 1 | 1 | 4 | 2 | 2 | 4 | 5 | 5 | 5 | 5 | 10 | 10 | 20 | 20 | 4 | 10 | ··· | 10 | 20 | 20 | 20 | 20 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 8 | 8 |
38 irreducible representations
| dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 | 4 | 4 | 8 |
| type | + | + | + | + | + | + | + | + | + | + | - | ||||||
| image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C4 | C4 | C4 | C4○D4 | C8○D4 | F5 | C2×F5 | C2×F5 | D10.C23 | D4.F5 |
| kernel | C23.(C2×F5) | C4×C5⋊C8 | C20⋊C8 | C10.C42 | Dic5⋊C8 | C23.2F5 | C23.11D10 | C10.D4 | C23.D5 | C5×C22⋊C4 | Dic5 | C10 | C22⋊C4 | C2×C4 | C23 | C2 | C2 |
| # reps | 1 | 1 | 1 | 1 | 1 | 2 | 1 | 4 | 2 | 2 | 4 | 8 | 1 | 2 | 1 | 4 | 2 |
Matrix representation of C23.(C2×F5) ►in GL6(𝔽41)
| 1 | 0 | 0 | 0 | 0 | 0 |
| 0 | 40 | 0 | 0 | 0 | 0 |
| 0 | 0 | 40 | 0 | 0 | 0 |
| 0 | 0 | 0 | 40 | 0 | 0 |
| 0 | 0 | 0 | 0 | 1 | 0 |
| 0 | 0 | 0 | 0 | 0 | 1 |
| 40 | 0 | 0 | 0 | 0 | 0 |
| 0 | 40 | 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 | 0 | 0 |
| 0 | 0 | 0 | 1 | 0 | 0 |
| 0 | 0 | 0 | 0 | 1 | 0 |
| 0 | 0 | 0 | 0 | 0 | 1 |
| 0 | 1 | 0 | 0 | 0 | 0 |
| 1 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 9 | 0 | 0 | 0 |
| 0 | 0 | 0 | 9 | 0 | 0 |
| 0 | 0 | 0 | 0 | 9 | 0 |
| 0 | 0 | 0 | 0 | 0 | 9 |
| 1 | 0 | 0 | 0 | 0 | 0 |
| 0 | 1 | 0 | 0 | 0 | 0 |
| 0 | 0 | 7 | 40 | 0 | 0 |
| 0 | 0 | 8 | 40 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 35 |
| 0 | 0 | 0 | 0 | 7 | 34 |
| 14 | 0 | 0 | 0 | 0 | 0 |
| 0 | 14 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 1 | 0 |
| 0 | 0 | 0 | 0 | 0 | 1 |
| 0 | 0 | 40 | 1 | 0 | 0 |
| 0 | 0 | 0 | 1 | 0 | 0 |
G:=sub<GL(6,GF(41))| [1,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,9,0,0,0,0,0,0,9,0,0,0,0,0,0,9,0,0,0,0,0,0,9],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,7,8,0,0,0,0,40,40,0,0,0,0,0,0,0,7,0,0,0,0,35,34],[14,0,0,0,0,0,0,14,0,0,0,0,0,0,0,0,40,0,0,0,0,0,1,1,0,0,1,0,0,0,0,0,0,1,0,0] >;
C23.(C2×F5) in GAP, Magma, Sage, TeX
C_2^3.(C_2\times F_5)
% in TeX
G:=Group("C2^3.(C2xF5)"); // GroupNames label
G:=SmallGroup(320,1035);
// by ID
G=gap.SmallGroup(320,1035);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,56,120,422,387,136,6278,1595]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^4=d^5=1,e^4=b,c*a*c^-1=a*b=b*a,a*d=d*a,e*a*e^-1=a*c^2,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=d^3>;
// generators/relations